Dimensions in Pointer Analysis

CS6013: Modern Compilers - Theory and Practice

Manas Thakur

PACE Lab, IIT Madras

April 8th, 2016



Pointer Analysis
Pointer Analysis

e Establishes which pointers (or heap references) can point to which
objects (or storage locations).

@ Applications: Alias analysis, shape analysis, escape analysis, etc.

=PACE

Manas Thakur (IIT Madras) CS6013 1 of 20



Pointer Analysis
Pointer Analysis

e Establishes which pointers (or heap references) can point to which
objects (or storage locations).

@ Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {
public void foo() {
A al, a2, a3;

al = new AQ); //11
if (%)

a2 = new AQ; //12
else

a2 = new BQ); //13
a3 = al;

} =PACE

Manas Thakur (IIT Madras) CS6013 1 of 20




Pointer Analysis
Pointer Analysis

e Establishes which pointers (or heap references) can point to which
objects (or storage locations).

@ Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {

public void foo() {

A al, a2, as3; Points-to sets:

al = new AQ); //11
lf(*) e al — {11}
a2 = new AQ; //12 e a2 — {12, 13}
else e a3 — {11}
a2 = new BQ); //13
a3 = al;

} =PACE

Manas Thakur (IIT Madras) CS6013 1 of 20




Analysis Dimensions
Overview

© Analysis Dimensions
@ Flow-sensitivity
o Field-sensitivity
@ Interprocedural analysis
o Context-sensitivity

=PACE

Manas Thakur (IIT Madras) CS6013 2 of 20



Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {
public void foo() {
A al, a2, a3;
al = new AQ); //11
if (%)
a2
else
a2
al = a2;
a3 = a2;

new AQ); //12

new AQ); //13

0 ~NO O WN =

=PACE

Manas Thakur (IIT Madras) CS6013 3 of 20



Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {
public void foo() { Flow-insensitive points-to sets:
A al, a2, a3; e al: {11, 12, 13}
al = new AQ); //11 e a3: {12, 13}
if (%)
a2
else
a2
al = a2;
a3 = a2;

new AQ); //12

new AQ); //13

0 ~NO O WN =

=PACE

Manas Thakur (IIT Madras) CS6013 3 of 20



Analysis Dimensions

Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {
public void foo() {
A al, a2, a3;

1: al = new AQ); //11
2: if (*)
3: a2 = new AQ); //12
4: else
5: a2 = new A(Q); //13
6: al = a2;
7: a3 = a2;
8:

}
}

Manas Thakur (IIT Madras)

Flow-insensitive points-to sets:
{11, 12, 13}
{12, 13}

@ al:

o a3:

Flow-sensitive points-to sets for:
@ al:
o {} till line no. 1
o {11} from line nos. 1 to 6
o {12, 13} afterwards
@ a3:

o {} till line no. 7
e {12, 13} afterwards

=PACE

CS6013 3 of 20



Analysis Dimensions Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A £2;}
class C {
public void foo() {
A ail;
al = new AQ); //11
al.fl = new A(Q); //12
al.f2 = new AQ); //13

=PACE

Manas Thakur (IIT Madras) CS6013 4 of 20



Analysis Dimensions

Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A £2;}
class C {
public void foo() {
A ail;
al = new AQ); //11
al.fl = new A(Q); //12
al.f2 = new AQ); //13

Manas Thakur (IIT Madras)

Field-insensitive points-to sets:
o al — {11, 12, 13}

=PACE

CS6013 4 of 20



Analysis Dimensions

Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A £2;}
class C {
public void foo() {
A ail;
al = new AQ); //11
al.fl = new A(Q); //12
al.f2 = new AQ); //13

Manas Thakur (IIT Madras)

Field-insensitive points-to sets:
o al — {11, 12, 13}

Field-sensitive points-to sets:
e al — {11}
0 al.f1 — {12}
0 al.f2 — {13}

=PACE

CS6013 4 of 20



Analysis Dimensions Interprocedural analysis

Intraprocedural vs Interprocedural analyses

Say, method f0 calls method f1.

Intraprocedural analysis:
@ Information computed for £0 ignores the points-to results of f1.

o Conservative assumptions are made at call sites.

=PACE

Manas Thakur (IIT Madras) CS6013 5 of 20



Analysis Dimensions Interprocedural analysis

Intraprocedural vs Interprocedural analyses

Say, method f0 calls method f1.

Intraprocedural analysis:
@ Information computed for £0 ignores the points-to results of f1.

o Conservative assumptions are made at call sites.

Interprocedural analysis:
@ Information computed for £0 considers the points-to results of f£1.

@ Requires a call-graph.

=PACE

Manas Thakur (IIT Madras) CS6013 5 of 20



Analysis Dimensions Interprocedural analysis

Call-Graph Construction

@ A call-graph is needed to determine the possible callees at a call-site.

o Offline as a pre-analysis.

o On-the-fly using points-to results.

=PACE

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Interprocedural analysis

Call-Graph Construction

@ A call-graph is needed to determine the possible callees at a call-site.

o Offline as a pre-analysis.

o On-the-fly using points-to results.

o Class Hierarchy Analysis (CHA)

class A
method m
exwms
class B class C CHA helps in determining that only one
method m method p implementation of m can be called.
ext%v\xtends
class D class E
method bt =PACE

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

=PACE

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?

=PACE

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?
o Call-site-sensitivity

@ Object-sensitivity

=PACE

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fbO...}
class B extends A { fb()...}

class C {
A ail;

public void foo() {
al = new AQ); // 11
cl: bar(al);
al = new B(Q); // 12
c2: bar(al);

}

public void bar(A pl) {
pl.fb(O;
}

}
=PACE

Manas Thakur (IIT Madras) CS6013 8 of 20



Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fbO...}
class B extends A { fb()...}

class C {
A ail;

Context-insensitive:
e al — {11, 12}

public void foo() { @ Both A's and B’s £b can be called.
al = new AQ; // 11

cl: bar(al);
al = new B(Q); // 12

c2: bar(al);

}

public void bar(A pl) {
pl.fb(O;
}

}
=PACE

Manas Thakur (IIT Madras) CS6013 8 of 20



Analysis Dimensions

1-Call-site-sensitive

Context-sensitivity

class A { fbO...}
class B extends A { fb()...}

class C {
A ail;

public void foo() {

al = new AQ; // 11
cl: bar(al);

al = new B(Q); // 12
c2: bar(al);

}

public void bar(A pl) {
pl.fb(O;
}

}

Manas Thakur (IIT Madras)

Context-insensitive:
e al — {11, 12}
@ Both A’s and B's fb can be called.

1-Call-site-sensitive:

® a1l — {11}
A’'s £b will be called.

e al — {12}
B's fb will be called.

=PACE

CS6013 8 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void foo1() {
bar();
}

public void foo2() {
bar() ;
}

public void bar() {
b0
}

}

=PACE

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void fool() {
bar() ;
} 1-Call-site-sensitive:
public void foo2() { @ 1 context for fb
bar(Q;

}

public void bar() {
1 JON
}

}

=PACE

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void fool() {
bar() ;
} 1-Call-site-sensitive:
public void foo2() { @ 1 context for fb
bar(Q;
} 2-Call-site-sensitive:
public void bar() { @ 2 contexts for fb
fb();
}
}

=PACE

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

1-Object-sensitive

Distinguish contexts based on the allocation site of the receiver.

=PACE

Manas Thakur (IIT Madras) CS6013 10 of 20



Analysis Dimensions Context-sensitivity

1-Object-sensitive

Distinguish contexts based on the allocation site of the receiver.

1 context for foo; 2 contexts for bar

} =PACE

Manas Thakur (IIT Madras) CS6013 10 of 20



Analysis Dimensions Context-sensitivity

2-Object-sensitive

Distinguish contexts based on:
@ Allocation site of receiver
@ Allocation site of allocator of receiver

=PACE

Manas Thakur (IIT Madras) CS6013 11 of 20



Analysis Dimensions Context-sensitivity

2-Object-sensitive

Distinguish contexts based on:
@ Allocation site of receiver
@ Allocation site of allocator of receiver

main() {
ol = new AQ);
0l.foo();
1 = A ; - .-, .
21,f02?§; O 1-Object-sensitive:
} @ 1 context for bar
fooO) { 2-Object-sensitive:
2; .‘;a???;A() ’ @ 2 contexts for bar
}
bar() {...} ACE

Manas Thakur (IIT Madras) CS6013 11 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
ol = new AQ);
ol.foo(); ) N
o1.foo(); 2-Object-sensitive:
} @ 1 context for bar
foo() {
02 = new AQ);
02.bar();
}
bar() {...}

=PACE

Manas Thakur (IIT Madras) CS6013 12 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
ol = new AQ);
ol.foo(Q); . .
01.£000); 2-Object-sensitive:
} @ 1 context for bar
foo) { 2-Call-site-sensitive:
02 = new AQ; @ 2 contexts for bar
) 02.bar(); @ No change in precision
bar() {...}

=PACE

Manas Thakur (IIT Madras) CS6013 12 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
ol = new AQ);
ol.foo(); . .
ol.f00(): 2-Object-sensitive:
} @ 1 context for bar
foo) { 2-Call-site-sensitive:
02 = new AQ; @ 2 contexts for bar
) 02.bar(); @ No change in precision
bar() {...}

There is no thumb-rule for choosing the type of context-sensitivity; it
depends on the application and the desired precision. —PACE

Manas Thakur (IIT Madras) CS6013 12 of 20



Application
Overview

e Application

=PACE

Manas Thakur (IIT Madras) CS6013 13 of 20



Application
Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

=PACE

Manas Thakur (IIT Madras) CS6013 14 of 20



Application
Escape Analysis

Definition
An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:
@ Passed as an argument to another method.

@ Returned from the method.
@ Accessible by a static (global) variable. (thread-escape)

=PACE

Manas Thakur (IIT Madras) CS6013 14 of 20



Application
Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:
@ Passed as an argument to another method.
@ Returned from the method.
@ Accessible by a static (global) variable. (thread-escape)

Escape analysis helps in:
@ Stack allocation

@ Synchronization elimination

=PACE

Manas Thakur (IIT Madras) CS6013 14 of 20



Application
Example

class A {...}
class C {
static A global;
public void foo() {
A al, a2, a3;

al = new AQ; //11
a2 = new AQ); //12
a3 = new AQ); //13
global = a2;
al.m2Q);

=PACE

Manas Thakur (IIT Madras) CS6013 15 of 20



Application
Example

class A {...} Points-to sets:

class C { e al — {11}
static A global;
° a2 — {12}

public void foo() {

A al, a2, a3; ° a3 — {13}
al = new AQ; //11 e global — {12}
a2 = new AQ); //12

a3 = new AQ); //13

global = a2;

al.m2Q0);

=PACE

Manas Thakur (IIT Madras) CS6013 15 of 20



Application
Example

class A {...}
class C {
static A global;
public void foo() {
A al, a2, a3;

al = new AQ); //11
a2 = new AQ); //12
a3 = new AQ); //13
global = a2;
al.m2Q);

Manas Thakur (IIT Madras)

CS6013

Points-to sets:
o al — {11}
° a2 — {12}
e a3 — {13}
e global — {12}

Escape analysis results:
@ 11 escapes foo()

@ 12 escapes foo() as
well as the thread

@ 13 does not escape

=PACE

15 of 20



Application
Exercise: Flow-sensitivity

class C {
static A global;

public void foo() {
pl: A al =new AQ; //11
p2: A a2 = new AQ; //12
p3: global = al;

=PACE

Manas Thakur (IIT Madras) CS6013 16 of 20



Application
Exercise: Flow-sensitivity

class C {

static A global;
Flow-insensitive:

public void foo() { @ 11 escapes the thread.
pl: A al =new AQ; //11
p2: A a2 = new AQ; //12

p3: global = al; Flow-sensitive:
} @ 11 escapes the thread after the
point p3.
}

=PACE

Manas Thakur (IIT Madras) CS6013 16 of 20



Application
Exercise: Field-sensitivity

class C {
static A global;

public void foo() {

A al = new AQ); //11
al.f = new AQ); //12
A a2 = new AQ); //13

global = al.f;
b

=PACE

Manas Thakur (IIT Madras) CS6013 17 of 20



Application
Exercise: Field-sensitivity

class C {
static A global;

public void foo() { Field-insensitive:

A al = new AQ); //11 @ 11 and 12 escape the thread.
al.f = new AQ); //12
A a2 = new AQ); //13

global = al.f; Field-sensitive:

b @ 12 escapes the thread.

=PACE

Manas Thakur (IIT Madras) CS6013 17 of 20



Application
Exercise: Context-sensitivity

class A {
A £,
public void bar() {
A b3 = new AQ); //14
this.f = b3;
}
}

class C {
static A global;
public void foo() {
A al = new AQ); //11
al.bar(); //ct
global = ail;
al.bar(); //c2

=PACE

Manas Thakur (IIT Madras) CS6013 18 of 20



Application
Exercise: Context-sensitivity

class A {
A £,
public void bar() {
A b3 = new AQ); //14
this.f = b3; Context-insensitive (bar):
) } @ 14 escapes the thread.
class C { . _
static A global; Context-sensitive (bar):
public void foo() { @ 14 does not escape the thread
A al = new AQ); //11 from the call at c1.
al.bar(Q); //cl @ 14 escapes the thread from the
global = al; call at c2.
al.bar(); //c2
}
}
=PACE

Manas Thakur (IIT Madras) CS6013 18 of 20



Conclusion
Conclusion

@ There are various dimensions along which the precision of a pointer
analysis can be improved.

@ Usually there is a tradeoff between the precision and the efficiency of
an analysis.

@ The dimensions that we discussed can be applied to improve the
precision of other program analyses as well.

=PACE

Manas Thakur (IIT Madras) CS6013 19 of 20



Conclusion
Conclusion

@ There are various dimensions along which the precision of a pointer
analysis can be improved.

@ Usually there is a tradeoff between the precision and the efficiency of
an analysis.

@ The dimensions that we discussed can be applied to improve the
precision of other program analyses as well.

Thank You.

=PACE

Manas Thakur (IIT Madras) CS6013 19 of 20



Conclusion
Pointers for the enthusiast

@ Vivien F. and Rinard M., Incrementalized Pointer and Escape
Analysis, PLDI 2001.

@ Hardekopf B. and Lin C., The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis for Millions of Lines of Code, PLDI 2007.

@ Whaley J. and Lam Monica S., Cloning-based Context-sensitive
Pointer Alias Analysis using Binary Decision Diagrams, PLDI 2004.

@ Slides: https://manasthakur.github.io/docs/cs6013-dpa.pdf

=PACE

Manas Thakur (IIT Madras) CS6013 20 of 20



	Pointer Analysis
	Analysis Dimensions
	Flow-sensitivity
	Field-sensitivity
	Interprocedural analysis
	Context-sensitivity

	Application
	Conclusion

