
Dimensions in Pointer Analysis

CS6013: Modern Compilers - Theory and Practice

Manas Thakur

PACE Lab, IIT Madras

April 8th, 2016



Pointer Analysis

Pointer Analysis

Establishes which pointers (or heap references) can point to which
objects (or storage locations).

Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {

public void foo() {
A a1, a2, a3;
a1 = new A(); //l1
if(*)

a2 = new A(); //l2
else

a2 = new B(); //l3
a3 = a1;

}
}

Points-to sets:

a1 → {l1}
a2 → {l2, l3}
a3 → {l1}

Manas Thakur (IIT Madras) CS6013 1 of 20



Pointer Analysis

Pointer Analysis

Establishes which pointers (or heap references) can point to which
objects (or storage locations).

Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {

public void foo() {
A a1, a2, a3;
a1 = new A(); //l1
if(*)

a2 = new A(); //l2
else

a2 = new B(); //l3
a3 = a1;

}
}

Points-to sets:

a1 → {l1}
a2 → {l2, l3}
a3 → {l1}

Manas Thakur (IIT Madras) CS6013 1 of 20



Pointer Analysis

Pointer Analysis

Establishes which pointers (or heap references) can point to which
objects (or storage locations).

Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {

public void foo() {
A a1, a2, a3;
a1 = new A(); //l1
if(*)

a2 = new A(); //l2
else

a2 = new B(); //l3
a3 = a1;

}
}

Points-to sets:

a1 → {l1}
a2 → {l2, l3}
a3 → {l1}

Manas Thakur (IIT Madras) CS6013 1 of 20



Analysis Dimensions

Overview

1 Pointer Analysis

2 Analysis Dimensions
Flow-sensitivity
Field-sensitivity
Interprocedural analysis
Context-sensitivity

3 Application

4 Conclusion

Manas Thakur (IIT Madras) CS6013 2 of 20



Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {

public void foo() {

A a1, a2, a3;

1: a1 = new A(); //l1

2: if(*)

3: a2 = new A(); //l2

4: else

5: a2 = new A(); //l3

6: a1 = a2;

7: a3 = a2;

8: ...

}

}

Flow-insensitive points-to sets:

a1: {l1, l2, l3}
a3: {l2, l3}

Flow-sensitive points-to sets for:

a1:

{} till line no. 1
{l1} from line nos. 1 to 6
{l2, l3} afterwards

a3:

{} till line no. 7
{l2, l3} afterwards

Manas Thakur (IIT Madras) CS6013 3 of 20



Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {

public void foo() {

A a1, a2, a3;

1: a1 = new A(); //l1

2: if(*)

3: a2 = new A(); //l2

4: else

5: a2 = new A(); //l3

6: a1 = a2;

7: a3 = a2;

8: ...

}

}

Flow-insensitive points-to sets:

a1: {l1, l2, l3}
a3: {l2, l3}

Flow-sensitive points-to sets for:

a1:

{} till line no. 1
{l1} from line nos. 1 to 6
{l2, l3} afterwards

a3:

{} till line no. 7
{l2, l3} afterwards

Manas Thakur (IIT Madras) CS6013 3 of 20



Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {

public void foo() {

A a1, a2, a3;

1: a1 = new A(); //l1

2: if(*)

3: a2 = new A(); //l2

4: else

5: a2 = new A(); //l3

6: a1 = a2;

7: a3 = a2;

8: ...

}

}

Flow-insensitive points-to sets:

a1: {l1, l2, l3}
a3: {l2, l3}

Flow-sensitive points-to sets for:

a1:

{} till line no. 1
{l1} from line nos. 1 to 6
{l2, l3} afterwards

a3:

{} till line no. 7
{l2, l3} afterwards

Manas Thakur (IIT Madras) CS6013 3 of 20



Analysis Dimensions Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A f2;}

class C {

public void foo() {

A a1;

a1 = new A(); //l1

a1.f1 = new A(); //l2

a1.f2 = new A(); //l3

}

}

Field-insensitive points-to sets:

a1 → {l1, l2, l3}

Field-sensitive points-to sets:

a1 → {l1}
a1.f1 → {l2}
a1.f2 → {l3}

Manas Thakur (IIT Madras) CS6013 4 of 20



Analysis Dimensions Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A f2;}

class C {

public void foo() {

A a1;

a1 = new A(); //l1

a1.f1 = new A(); //l2

a1.f2 = new A(); //l3

}

}

Field-insensitive points-to sets:

a1 → {l1, l2, l3}

Field-sensitive points-to sets:

a1 → {l1}
a1.f1 → {l2}
a1.f2 → {l3}

Manas Thakur (IIT Madras) CS6013 4 of 20



Analysis Dimensions Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A f2;}

class C {

public void foo() {

A a1;

a1 = new A(); //l1

a1.f1 = new A(); //l2

a1.f2 = new A(); //l3

}

}

Field-insensitive points-to sets:

a1 → {l1, l2, l3}

Field-sensitive points-to sets:

a1 → {l1}
a1.f1 → {l2}
a1.f2 → {l3}

Manas Thakur (IIT Madras) CS6013 4 of 20



Analysis Dimensions Interprocedural analysis

Intraprocedural vs Interprocedural analyses

Say, method f0 calls method f1.

Intraprocedural analysis:

Information computed for f0 ignores the points-to results of f1.

Conservative assumptions are made at call sites.

Interprocedural analysis:

Information computed for f0 considers the points-to results of f1.

Requires a call-graph.

Manas Thakur (IIT Madras) CS6013 5 of 20



Analysis Dimensions Interprocedural analysis

Intraprocedural vs Interprocedural analyses

Say, method f0 calls method f1.

Intraprocedural analysis:

Information computed for f0 ignores the points-to results of f1.

Conservative assumptions are made at call sites.

Interprocedural analysis:

Information computed for f0 considers the points-to results of f1.

Requires a call-graph.

Manas Thakur (IIT Madras) CS6013 5 of 20



Analysis Dimensions Interprocedural analysis

Call-Graph Construction

A call-graph is needed to determine the possible callees at a call-site.

Offline as a pre-analysis.

On-the-fly using points-to results.

Class Hierarchy Analysis (CHA)

CHA helps in determining that only one
implementation of m can be called.

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Interprocedural analysis

Call-Graph Construction

A call-graph is needed to determine the possible callees at a call-site.

Offline as a pre-analysis.

On-the-fly using points-to results.

Class Hierarchy Analysis (CHA)

CHA helps in determining that only one
implementation of m can be called.

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?

Call-site-sensitivity

Object-sensitivity

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?

Call-site-sensitivity

Object-sensitivity

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?

Call-site-sensitivity

Object-sensitivity

Manas Thakur (IIT Madras) CS6013 7 of 20



Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fb()...}
class B extends A { fb()...}

class C {
A a1;

public void foo() {
a1 = new A(); // l1

c1: bar(a1);
a1 = new B(); // l2

c2: bar(a1);
}

public void bar(A p1) {
p1.fb();

}
}

Context-insensitive:

a1 → {l1, l2}
Both A’s and B’s fb can be called.

1-Call-site-sensitive:

a1 → {l1}
A’s fb will be called.

a1 → {l2}
B’s fb will be called.

Manas Thakur (IIT Madras) CS6013 8 of 20



Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fb()...}
class B extends A { fb()...}

class C {
A a1;

public void foo() {
a1 = new A(); // l1

c1: bar(a1);
a1 = new B(); // l2

c2: bar(a1);
}

public void bar(A p1) {
p1.fb();

}
}

Context-insensitive:

a1 → {l1, l2}
Both A’s and B’s fb can be called.

1-Call-site-sensitive:

a1 → {l1}
A’s fb will be called.

a1 → {l2}
B’s fb will be called.

Manas Thakur (IIT Madras) CS6013 8 of 20



Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fb()...}
class B extends A { fb()...}

class C {
A a1;

public void foo() {
a1 = new A(); // l1

c1: bar(a1);
a1 = new B(); // l2

c2: bar(a1);
}

public void bar(A p1) {
p1.fb();

}
}

Context-insensitive:

a1 → {l1, l2}
Both A’s and B’s fb can be called.

1-Call-site-sensitive:

a1 → {l1}
A’s fb will be called.

a1 → {l2}
B’s fb will be called.

Manas Thakur (IIT Madras) CS6013 8 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void foo1() {

bar();
}

public void foo2() {
bar();

}

public void bar() {
fb();

}
}

1-Call-site-sensitive:

1 context for fb

2-Call-site-sensitive:

2 contexts for fb

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void foo1() {

bar();
}

public void foo2() {
bar();

}

public void bar() {
fb();

}
}

1-Call-site-sensitive:

1 context for fb

2-Call-site-sensitive:

2 contexts for fb

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void foo1() {

bar();
}

public void foo2() {
bar();

}

public void bar() {
fb();

}
}

1-Call-site-sensitive:

1 context for fb

2-Call-site-sensitive:

2 contexts for fb

Manas Thakur (IIT Madras) CS6013 9 of 20



Analysis Dimensions Context-sensitivity

1-Object-sensitive

Distinguish contexts based on the allocation site of the receiver.

main() {
o1 = new A();
o2 = new A();
o1.bar();
o2.foo();
o2.bar();
o2.foo();

}

foo() {
...

}

bar() {
...

}

1 context for foo; 2 contexts for bar

Manas Thakur (IIT Madras) CS6013 10 of 20



Analysis Dimensions Context-sensitivity

1-Object-sensitive

Distinguish contexts based on the allocation site of the receiver.

main() {
o1 = new A();
o2 = new A();
o1.bar();
o2.foo();
o2.bar();
o2.foo();

}

foo() {
...

}

bar() {
...

}

1 context for foo; 2 contexts for bar

Manas Thakur (IIT Madras) CS6013 10 of 20



Analysis Dimensions Context-sensitivity

2-Object-sensitive

Distinguish contexts based on:

Allocation site of receiver

Allocation site of allocator of receiver

main() {
o1 = new A();
o1.foo();
o1 = new A();
o1.foo();

}

foo() {
o2 = new A();
o2.bar();

}

bar() {...}

1-Object-sensitive:

1 context for bar

2-Object-sensitive:

2 contexts for bar

Manas Thakur (IIT Madras) CS6013 11 of 20



Analysis Dimensions Context-sensitivity

2-Object-sensitive

Distinguish contexts based on:

Allocation site of receiver

Allocation site of allocator of receiver

main() {
o1 = new A();
o1.foo();
o1 = new A();
o1.foo();

}

foo() {
o2 = new A();
o2.bar();

}

bar() {...}

1-Object-sensitive:

1 context for bar

2-Object-sensitive:

2 contexts for bar

Manas Thakur (IIT Madras) CS6013 11 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
o1 = new A();

o1.foo();

o1.foo();

}

foo() {
o2 = new A();

o2.bar();

}

bar() {...}

2-Object-sensitive:

1 context for bar

2-Call-site-sensitive:

2 contexts for bar

No change in precision

There is no thumb-rule for choosing the type of context-sensitivity; it
depends on the application and the desired precision.

Manas Thakur (IIT Madras) CS6013 12 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
o1 = new A();

o1.foo();

o1.foo();

}

foo() {
o2 = new A();

o2.bar();

}

bar() {...}

2-Object-sensitive:

1 context for bar

2-Call-site-sensitive:

2 contexts for bar

No change in precision

There is no thumb-rule for choosing the type of context-sensitivity; it
depends on the application and the desired precision.

Manas Thakur (IIT Madras) CS6013 12 of 20



Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
o1 = new A();

o1.foo();

o1.foo();

}

foo() {
o2 = new A();

o2.bar();

}

bar() {...}

2-Object-sensitive:

1 context for bar

2-Call-site-sensitive:

2 contexts for bar

No change in precision

There is no thumb-rule for choosing the type of context-sensitivity; it
depends on the application and the desired precision.

Manas Thakur (IIT Madras) CS6013 12 of 20



Application

Overview

1 Pointer Analysis

2 Analysis Dimensions
Flow-sensitivity
Field-sensitivity
Interprocedural analysis
Context-sensitivity

3 Application

4 Conclusion

Manas Thakur (IIT Madras) CS6013 13 of 20



Application

Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:

Passed as an argument to another method.

Returned from the method.

Accessible by a static (global) variable. (thread-escape)

Escape analysis helps in:

Stack allocation

Synchronization elimination

Manas Thakur (IIT Madras) CS6013 14 of 20



Application

Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:

Passed as an argument to another method.

Returned from the method.

Accessible by a static (global) variable. (thread-escape)

Escape analysis helps in:

Stack allocation

Synchronization elimination

Manas Thakur (IIT Madras) CS6013 14 of 20



Application

Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:

Passed as an argument to another method.

Returned from the method.

Accessible by a static (global) variable. (thread-escape)

Escape analysis helps in:

Stack allocation

Synchronization elimination

Manas Thakur (IIT Madras) CS6013 14 of 20



Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Exercise: Flow-sensitivity

class C {
static A global;

public void foo() {
p1: A a1 = new A(); //l1
p2: A a2 = new A(); //l2
p3: global = a1;

...
}

}

Flow-insensitive:

l1 escapes the thread.

Flow-sensitive:

l1 escapes the thread after the
point p3.

Manas Thakur (IIT Madras) CS6013 16 of 20



Application

Exercise: Flow-sensitivity

class C {
static A global;

public void foo() {
p1: A a1 = new A(); //l1
p2: A a2 = new A(); //l2
p3: global = a1;

...
}

}

Flow-insensitive:

l1 escapes the thread.

Flow-sensitive:

l1 escapes the thread after the
point p3.

Manas Thakur (IIT Madras) CS6013 16 of 20



Application

Exercise: Field-sensitivity

class C {
static A global;

public void foo() {
A a1 = new A(); //l1
a1.f = new A(); //l2
A a2 = new A(); //l3
global = a1.f;

}

}

Field-insensitive:

l1 and l2 escape the thread.

Field-sensitive:

l2 escapes the thread.

Manas Thakur (IIT Madras) CS6013 17 of 20



Application

Exercise: Field-sensitivity

class C {
static A global;

public void foo() {
A a1 = new A(); //l1
a1.f = new A(); //l2
A a2 = new A(); //l3
global = a1.f;

}

}

Field-insensitive:

l1 and l2 escape the thread.

Field-sensitive:

l2 escapes the thread.

Manas Thakur (IIT Madras) CS6013 17 of 20



Application

Exercise: Context-sensitivity

class A {
A f;
public void bar() {

A b3 = new A(); //l4
this.f = b3;

}
}

class C {
static A global;
public void foo() {

A a1 = new A(); //l1
a1.bar(); //c1
global = a1;
a1.bar(); //c2

}
}

Context-insensitive (bar):

l4 escapes the thread.

Context-sensitive (bar):

l4 does not escape the thread
from the call at c1.

l4 escapes the thread from the
call at c2.

Manas Thakur (IIT Madras) CS6013 18 of 20



Application

Exercise: Context-sensitivity

class A {
A f;
public void bar() {

A b3 = new A(); //l4
this.f = b3;

}
}

class C {
static A global;
public void foo() {

A a1 = new A(); //l1
a1.bar(); //c1
global = a1;
a1.bar(); //c2

}
}

Context-insensitive (bar):

l4 escapes the thread.

Context-sensitive (bar):

l4 does not escape the thread
from the call at c1.

l4 escapes the thread from the
call at c2.

Manas Thakur (IIT Madras) CS6013 18 of 20



Conclusion

Conclusion

There are various dimensions along which the precision of a pointer
analysis can be improved.

Usually there is a tradeoff between the precision and the efficiency of
an analysis.

The dimensions that we discussed can be applied to improve the
precision of other program analyses as well.

Thank You.

Manas Thakur (IIT Madras) CS6013 19 of 20



Conclusion

Conclusion

There are various dimensions along which the precision of a pointer
analysis can be improved.

Usually there is a tradeoff between the precision and the efficiency of
an analysis.

The dimensions that we discussed can be applied to improve the
precision of other program analyses as well.

Thank You.

Manas Thakur (IIT Madras) CS6013 19 of 20



Conclusion

Pointers for the enthusiast

Vivien F. and Rinard M., Incrementalized Pointer and Escape
Analysis, PLDI 2001.

Hardekopf B. and Lin C., The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis for Millions of Lines of Code, PLDI 2007.

Whaley J. and Lam Monica S., Cloning-based Context-sensitive
Pointer Alias Analysis using Binary Decision Diagrams, PLDI 2004.

Slides: https://manasthakur.github.io/docs/cs6013-dpa.pdf

Manas Thakur (IIT Madras) CS6013 20 of 20


	Pointer Analysis
	Analysis Dimensions
	Flow-sensitivity
	Field-sensitivity
	Interprocedural analysis
	Context-sensitivity

	Application
	Conclusion

