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Pointer Analysis

Pointer Analysis

Establishes which pointers (or heap references) can point to which
objects (or storage locations).

Applications: Alias analysis, shape analysis, escape analysis, etc.

class A {...}
class B extends A {...}
class C {

public void foo() {
A a1, a2, a3;
a1 = new A(); //l1
if(*)

a2 = new A(); //l2
else

a2 = new B(); //l3
a3 = a1;

}
}

Points-to sets:

a1 → {l1}
a2 → {l2, l3}
a3 → {l1}
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Analysis Dimensions Flow-sensitivity

Flow-sensitivity

Flow-sensitive: Maintain information at each point of the program.

class C {

public void foo() {

A a1, a2, a3;

1: a1 = new A(); //l1

2: if(*)

3: a2 = new A(); //l2

4: else

5: a2 = new A(); //l3

6: a1 = a2;

7: a3 = a2;

8: ...

}

}

Flow-insensitive points-to sets:

a1: {l1, l2, l3}
a3: {l2, l3}

Flow-sensitive points-to sets for:

a1:

{} till line no. 1
{l1} from line nos. 1 to 6
{l2, l3} afterwards

a3:

{} till line no. 7
{l2, l3} afterwards
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Analysis Dimensions Field-sensitivity

Field-sensitivity

Field-sensitive: Maintain information separately for fields of an object.

class A {A f1; A f2;}

class C {

public void foo() {

A a1;

a1 = new A(); //l1

a1.f1 = new A(); //l2

a1.f2 = new A(); //l3

}

}

Field-insensitive points-to sets:

a1 → {l1, l2, l3}

Field-sensitive points-to sets:

a1 → {l1}
a1.f1 → {l2}
a1.f2 → {l3}
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Analysis Dimensions Interprocedural analysis

Intraprocedural vs Interprocedural analyses

Say, method f0 calls method f1.

Intraprocedural analysis:

Information computed for f0 ignores the points-to results of f1.

Conservative assumptions are made at call sites.

Interprocedural analysis:

Information computed for f0 considers the points-to results of f1.

Requires a call-graph.
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Analysis Dimensions Interprocedural analysis

Call-Graph Construction

A call-graph is needed to determine the possible callees at a call-site.

Offline as a pre-analysis.

On-the-fly using points-to results.

Class Hierarchy Analysis (CHA)

CHA helps in determining that only one
implementation of m can be called.

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Interprocedural analysis

Call-Graph Construction

A call-graph is needed to determine the possible callees at a call-site.

Offline as a pre-analysis.

On-the-fly using points-to results.

Class Hierarchy Analysis (CHA)

CHA helps in determining that only one
implementation of m can be called.

Manas Thakur (IIT Madras) CS6013 6 of 20



Analysis Dimensions Context-sensitivity

Context-sensitivity

Context-sensitive: Maintain different results for different contexts from
which a method is called.

What is a context?

Call-site-sensitivity

Object-sensitivity
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Analysis Dimensions Context-sensitivity

1-Call-site-sensitive

class A { fb()...}
class B extends A { fb()...}

class C {
A a1;

public void foo() {
a1 = new A(); // l1

c1: bar(a1);
a1 = new B(); // l2

c2: bar(a1);
}

public void bar(A p1) {
p1.fb();

}
}

Context-insensitive:

a1 → {l1, l2}
Both A’s and B’s fb can be called.

1-Call-site-sensitive:

a1 → {l1}
A’s fb will be called.

a1 → {l2}
B’s fb will be called.
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Analysis Dimensions Context-sensitivity

2-Call-site-sensitive

class C {
public void foo1() {

bar();
}

public void foo2() {
bar();

}

public void bar() {
fb();

}
}

1-Call-site-sensitive:

1 context for fb

2-Call-site-sensitive:

2 contexts for fb
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Analysis Dimensions Context-sensitivity

1-Object-sensitive

Distinguish contexts based on the allocation site of the receiver.

main() {
o1 = new A();
o2 = new A();
o1.bar();
o2.foo();
o2.bar();
o2.foo();

}

foo() {
...

}

bar() {
...

}

1 context for foo; 2 contexts for bar
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Analysis Dimensions Context-sensitivity

2-Object-sensitive

Distinguish contexts based on:

Allocation site of receiver

Allocation site of allocator of receiver

main() {
o1 = new A();
o1.foo();
o1 = new A();
o1.foo();

}

foo() {
o2 = new A();
o2.bar();

}

bar() {...}
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Analysis Dimensions Context-sensitivity

Which context-sensitivity is better?

main() {
o1 = new A();

o1.foo();

o1.foo();

}

foo() {
o2 = new A();

o2.bar();

}

bar() {...}

2-Object-sensitive:

1 context for bar

2-Call-site-sensitive:

2 contexts for bar

No change in precision

There is no thumb-rule for choosing the type of context-sensitivity; it
depends on the application and the desired precision.
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Application

Escape Analysis

Definition

An object is said to escape from a method/thread if it can be accessed in
another method/thread.

In Java, an object may escape the allocating method when:

Passed as an argument to another method.

Returned from the method.

Accessible by a static (global) variable. (thread-escape)

Escape analysis helps in:

Stack allocation

Synchronization elimination
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Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Example

class A {...}

class C {

static A global;

public void foo() {

A a1, a2, a3;

a1 = new A(); //l1

a2 = new A(); //l2

a3 = new A(); //l3

global = a2;

a1.m2();

}

}

Points-to sets :

a1 → {l1}
a2 → {l2}
a3 → {l3}
global → {l2}

Escape analysis results :

l1 escapes foo()

l2 escapes foo() as
well as the thread

l3 does not escape

Manas Thakur (IIT Madras) CS6013 15 of 20



Application

Exercise: Flow-sensitivity

class C {
static A global;

public void foo() {
p1: A a1 = new A(); //l1
p2: A a2 = new A(); //l2
p3: global = a1;

...
}

}

Flow-insensitive:

l1 escapes the thread.

Flow-sensitive:

l1 escapes the thread after the
point p3.
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Application

Exercise: Field-sensitivity

class C {
static A global;

public void foo() {
A a1 = new A(); //l1
a1.f = new A(); //l2
A a2 = new A(); //l3
global = a1.f;

}

}

Field-insensitive:

l1 and l2 escape the thread.

Field-sensitive:

l2 escapes the thread.
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Application

Exercise: Context-sensitivity

class A {
A f;
public void bar() {

A b3 = new A(); //l4
this.f = b3;

}
}

class C {
static A global;
public void foo() {

A a1 = new A(); //l1
a1.bar(); //c1
global = a1;
a1.bar(); //c2

}
}

Context-insensitive (bar):

l4 escapes the thread.

Context-sensitive (bar):

l4 does not escape the thread
from the call at c1.

l4 escapes the thread from the
call at c2.
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Conclusion

Conclusion

There are various dimensions along which the precision of a pointer
analysis can be improved.

Usually there is a tradeoff between the precision and the efficiency of
an analysis.

The dimensions that we discussed can be applied to improve the
precision of other program analyses as well.

Thank You.
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Conclusion

Pointers for the enthusiast

Vivien F. and Rinard M., Incrementalized Pointer and Escape
Analysis, PLDI 2001.

Hardekopf B. and Lin C., The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis for Millions of Lines of Code, PLDI 2007.

Whaley J. and Lam Monica S., Cloning-based Context-sensitive
Pointer Alias Analysis using Binary Decision Diagrams, PLDI 2004.

Slides: https://manasthakur.github.io/docs/cs6013-dpa.pdf
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