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Content Credits

● Introduction to Automata Theory, Languages, and Computation, 
3rd edition. Hopcroft et al.

● Introduction to the Theory of Computation, 2nd edition. Michael 
Sipser.

● Algorithms, TMH edition. Dasgupta et al.

● https://en.wikipedia.org

● https://images.google.com
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Outline

● Computation models

● Solvability

● Complexity

● Coping with difculties
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A Simple Problem

● Design a machine to determine whether a given program 
P1 prints “Hello World!”.

int main() {

printf(“Hello World!”);

return 0;

}
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A Simple Problem (Cont.)
int main() {

int n, total, x, y, z;

scanf(“%d”, &n);

total = 3;

while (1) {

for (x=1; x<=total-2; ++x) {

for (y=1; y<=total-x-1; ++y) {

z = total-x-y;
if (exp(x,n)+exp(y,n) == exp(z,n)) {

printf(“Hello World!”);
}

}

}

++total;

}

return 0;

}

int exp(int i, int n) {

int ans, j;

ans = 1;

for (j=1; j<=n; ++j) {

ans *= i;

}

return ans;

}
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Expressing problems as language-membership tests

● Step 1: Represent problem instances as strings over a fnite alphabet.

– Our program P1 is essentially a string of characters.
● Step 2: Design a machine M1 that accepts valid strings.

– Outputs yes, if P1 prints “Hello World!”.

– Outputs no, if P1 does not print “Hello World!”.

● The language accepted by M1 is:

L(M1) = { w | w is a program that prints “Hello World!” }

● If M1 always terminates and prints yes or no, it decides P1; 
else it recognizes P1.
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The Chomsky Hierarchy of Languages
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DFA and PDA: A Quick Recap
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Turing Machines
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Where are we?

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness
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An “undecidable” problem

● Given a TM M, and an input w, does M halt on w?

● Step 1:

L(M) = { <M,w> | M is a TM that halts on w }

● Step 2:
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Our First Undecidability Proof

● Prove that ATM = { <M,w> | M is a TM that accepts w } is 
undecidable.

● Assume that ATM is decidable by the following TM H:



 Manas Thakur 13 

Our First Undecidability Proof
● Give the string representation of M as input to H:

● Construct another TM D as follows:
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Our First Undecidability Proof
● What does D do on <D> as input?

● D accepts <D> if D does not accept <D>, and vice-versa.

● Contradiction!

● Hence, H does not exist. Thus, ATM is undecidable!! :-)
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Reducibility
● Reduce Problem A to Problem B.

● If B is decidable, so is A.

● If A is undecidable, so is B.

~(p implies q) == ~q implies ~p

A B

f



 Manas Thakur 16 

Back to the Halting Problem
● L(M) = { <M,w> | M is a TM that halts on w }

● Assume MH decides L(M).

● Reduce ATM to MH:

– Run MH on <M,w>.

– If MH rejects (i.e., M does not halt on w), then reject.

– If MH accepts, then simulate M on w (guaranteed to stop).

– Accept if M accepts w; reject if M rejects w.

● Thus, if MH always halts (assumed above), then ATM is decidable.

● Contradiction!

● Note that MH is Turing-recognizable, though.

ATM = { <M,w> | M is a TM that accepts w }
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Turing Machines and Algorithms

● Church-Turing Thesis: Every algorithm can be realized as 
a Turing Machine.

● A multitape-TM is equivalent to a single-tape TM.

● A TM can simulate a computer.

● A computer with an infnite tape can simulate a TM. 

● Turing Machines are more powerful than modern day 
computers!!

● What about Nondeterministic Turing Machines?
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Non-determinism: The Power of Guessing
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A Shift

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness
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Can a problem be solved in “good-enough” time?
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The P class of problems

● Problems that can be solved in polynomial time by a 
Deterministic Turing Machine

● All practical problems that we write algorithms for

● Example: Minimum Spanning Tree
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The Minimum Spanning Tree Problem
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The NP class of problems

● Problems that can be solved in polynomial time by a 
Nondeterministic Turing Machine

– A given solution can be checked in polynomial time by a 
Deterministic Turing Machine

● Even though the power of an NTM is equivalent to that of a 
DTM, the time requirements of NP may not be in the “good-
enough” zone

● Example: Travelling Salesman Problem (decision version)
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The Travelling Salesman Problem
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Is P = NP?
● A problem Q is NP-Complete if:

– Q is in NP

– All problems in NP can be reduced (in polynomial time) to Q
● A problem R is NP-Hard if:

– All problems in NP can be reduced (in polynomial time) to R

– It’s not known whether R is in NP
● Thus, if even a single NP-Complete problem can be solved by 

an algorithm in polynomial time, then P = NP.

● It seems that P != NP; however, there is no proof yet!
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Some popular problems

● NP-Complete:

– TSP

– SAT

– Subset sum

– Vertex cover

– Graph coloring

– Decision version of TSP

● NP-Hard but not NP-Complete:

– The Halting Problem (undecidable)

– General TSP
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A conclusive picture:
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So do we give up?
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Never surrender!

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness
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Special Cases

● SAT is NP-Complete.
● 2-SAT is in P.

● Vertex cover problem is NP-Complete.
● Vertex cover problem for bipartite graphs is in P.
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Intelligent Backtracking
● Useful for exhaustive space-search problems

● Consider the SAT instance:
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Approximation
● Obtain a near-optimal solution

● Consider the following problem:

There are 11 towns. According to a government policy, each 
hospital can cover 30 miles of distance around it. Find the 
optimal number of hospitals that need to be opened.
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Approximation (Cont.)

● Can be reduced to the Set Cover problem:
– Input: A set of elements
– Output: A selection of S

i
 whose union is B

– Cost: Number of sets picked

● Greedy algorithm: At each step, pick the set S
i
 with 

the largest number of uncovered elements
– {a, c, j, f} or {a, c, j, g}

● Optimal: {b, e, i}

● It can be proved that if the optimal set has k 
elements, the Greedy algorithm generates at max 
k.lnn sets.
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So how do YOU solve problems?

● Ask others for a solution
● Think, re-think, and think more
● Find a best-attempt solution
● Simplify the problem
● Try to generalize the solution
● Prove it unsolvable!
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How do Computer Scientists solve 
problems?

● Ask others for a solution

● Think, re-think, and think more

● Find a best-attempt solution

● Simplify the problem

● Try to generalize the solution

● Prove it unsolvable!

● Reduction

● Different algorithms

● Approximation

● Special cases

● Other cases?

● Prove it NP-Complete!
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Stay Hungry, Stay Foolish, Stay Connected

www.cse.iitm.ac.in/~manas

linkedin.com/in/manasthakur

github.com/manasthakur
gist.github.com/manasthakur

manasthakur.wordpress.com

manasthakur17@gmail.com

manasthakur.github.io/docs/year3sct.pdf
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