
Problems, and How Computer Scientists 
Solve Them

Manas Thakur
PACE Lab, IIT Madras



 Manas Thakur 2 

Content Credits

● Introduction to Automata Theory, Languages, and Computation, 
3rd edition. Hopcroft et al.

● Introduction to the Theory of Computation, 2nd edition. Michael 
Sipser.

● Algorithms, TMH edition. Dasgupta et al.

● https://en.wikipedia.org

● https://images.google.com



 Manas Thakur 3 

Outline

● Computation models

● Solvability

● Complexity

● Coping with difculties



 Manas Thakur 4 

A Simple Problem

● Design a machine to determine whether a given program 
P1 prints “Hello World!”.

int main() {

printf(“Hello World!”);

return 0;

}



 Manas Thakur 5 

A Simple Problem (Cont.)
int main() {

int n, total, x, y, z;

scanf(“%d”, &n);

total = 3;

while (1) {

for (x=1; x<=total-2; ++x) {

for (y=1; y<=total-x-1; ++y) {

z = total-x-y;
if (exp(x,n)+exp(y,n) == exp(z,n)) {

printf(“Hello World!”);
}

}

}

++total;

}

return 0;

}

int exp(int i, int n) {

int ans, j;

ans = 1;

for (j=1; j<=n; ++j) {

ans *= i;

}

return ans;

}



 Manas Thakur 6 

Expressing problems as language-membership tests

● Step 1: Represent problem instances as strings over a fnite alphabet.

– Our program P1 is essentially a string of characters.
● Step 2: Design a machine M1 that accepts valid strings.

– Outputs yes, if P1 prints “Hello World!”.

– Outputs no, if P1 does not print “Hello World!”.

● The language accepted by M1 is:

L(M1) = { w | w is a program that prints “Hello World!” }

● If M1 always terminates and prints yes or no, it decides P1; 
else it recognizes P1.



 Manas Thakur 7 

The Chomsky Hierarchy of Languages



 Manas Thakur 8 

DFA and PDA: A Quick Recap



 Manas Thakur 9 

Turing Machines



 Manas Thakur 10 

Where are we?

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness



 Manas Thakur 11 

An “undecidable” problem

● Given a TM M, and an input w, does M halt on w?

● Step 1:

L(M) = { <M,w> | M is a TM that halts on w }

● Step 2:

 



 Manas Thakur 12 

Our First Undecidability Proof

● Prove that ATM = { <M,w> | M is a TM that accepts w } is 
undecidable.

● Assume that ATM is decidable by the following TM H:



 Manas Thakur 13 

Our First Undecidability Proof
● Give the string representation of M as input to H:

● Construct another TM D as follows:



 Manas Thakur 14 

Our First Undecidability Proof
● What does D do on <D> as input?

● D accepts <D> if D does not accept <D>, and vice-versa.

● Contradiction!

● Hence, H does not exist. Thus, ATM is undecidable!! :-)



 Manas Thakur 15 

Reducibility
● Reduce Problem A to Problem B.

● If B is decidable, so is A.

● If A is undecidable, so is B.

~(p implies q) == ~q implies ~p

A B

f



 Manas Thakur 16 

Back to the Halting Problem
● L(M) = { <M,w> | M is a TM that halts on w }

● Assume MH decides L(M).

● Reduce ATM to MH:

– Run MH on <M,w>.

– If MH rejects (i.e., M does not halt on w), then reject.

– If MH accepts, then simulate M on w (guaranteed to stop).

– Accept if M accepts w; reject if M rejects w.

● Thus, if MH always halts (assumed above), then ATM is decidable.

● Contradiction!

● Note that MH is Turing-recognizable, though.

ATM = { <M,w> | M is a TM that accepts w }



 Manas Thakur 17 

Turing Machines and Algorithms

● Church-Turing Thesis: Every algorithm can be realized as 
a Turing Machine.

● A multitape-TM is equivalent to a single-tape TM.

● A TM can simulate a computer.

● A computer with an infnite tape can simulate a TM. 

● Turing Machines are more powerful than modern day 
computers!!

● What about Nondeterministic Turing Machines?



 Manas Thakur 18 

Non-determinism: The Power of Guessing



 Manas Thakur 19 

A Shift

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness



 Manas Thakur 20 

Can a problem be solved in “good-enough” time?



 Manas Thakur 21 

The P class of problems

● Problems that can be solved in polynomial time by a 
Deterministic Turing Machine

● All practical problems that we write algorithms for

● Example: Minimum Spanning Tree



 Manas Thakur 22 

The Minimum Spanning Tree Problem



 Manas Thakur 23 

The NP class of problems

● Problems that can be solved in polynomial time by a 
Nondeterministic Turing Machine

– A given solution can be checked in polynomial time by a 
Deterministic Turing Machine

● Even though the power of an NTM is equivalent to that of a 
DTM, the time requirements of NP may not be in the “good-
enough” zone

● Example: Travelling Salesman Problem (decision version)



 Manas Thakur 24 

The Travelling Salesman Problem



 Manas Thakur 25 

Is P = NP?
● A problem Q is NP-Complete if:

– Q is in NP

– All problems in NP can be reduced (in polynomial time) to Q
● A problem R is NP-Hard if:

– All problems in NP can be reduced (in polynomial time) to R

– It’s not known whether R is in NP
● Thus, if even a single NP-Complete problem can be solved by 

an algorithm in polynomial time, then P = NP.

● It seems that P != NP; however, there is no proof yet!



 Manas Thakur 26 

Some popular problems

● NP-Complete:

– TSP

– SAT

– Subset sum

– Vertex cover

– Graph coloring

– Decision version of TSP

● NP-Hard but not NP-Complete:

– The Halting Problem (undecidable)

– General TSP



 Manas Thakur 27 

A conclusive picture:



 Manas Thakur 28 

So do we give up?



 Manas Thakur 29 

Never surrender!

● Computation models

● Solvability

● Complexity

● Coping with NP-Completeness



 Manas Thakur 30 

Special Cases

● SAT is NP-Complete.
● 2-SAT is in P.

● Vertex cover problem is NP-Complete.
● Vertex cover problem for bipartite graphs is in P.



 Manas Thakur 31 

Intelligent Backtracking
● Useful for exhaustive space-search problems

● Consider the SAT instance:



 Manas Thakur 32 

Approximation
● Obtain a near-optimal solution

● Consider the following problem:

There are 11 towns. According to a government policy, each 
hospital can cover 30 miles of distance around it. Find the 
optimal number of hospitals that need to be opened.



 Manas Thakur 33 

Approximation (Cont.)

● Can be reduced to the Set Cover problem:
– Input: A set of elements
– Output: A selection of S

i
 whose union is B

– Cost: Number of sets picked

● Greedy algorithm: At each step, pick the set S
i
 with 

the largest number of uncovered elements
– {a, c, j, f} or {a, c, j, g}

● Optimal: {b, e, i}

● It can be proved that if the optimal set has k 
elements, the Greedy algorithm generates at max 
k.lnn sets.



 Manas Thakur 34 

So how do YOU solve problems?

● Ask others for a solution
● Think, re-think, and think more
● Find a best-attempt solution
● Simplify the problem
● Try to generalize the solution
● Prove it unsolvable!



 Manas Thakur 35 

How do Computer Scientists solve 
problems?

● Ask others for a solution

● Think, re-think, and think more

● Find a best-attempt solution

● Simplify the problem

● Try to generalize the solution

● Prove it unsolvable!

● Reduction

● Different algorithms

● Approximation

● Special cases

● Other cases?

● Prove it NP-Complete!



 Manas Thakur 36 

Stay Hungry, Stay Foolish, Stay Connected

www.cse.iitm.ac.in/~manas

linkedin.com/in/manasthakur

github.com/manasthakur
gist.github.com/manasthakur

manasthakur.wordpress.com

manasthakur17@gmail.com

manasthakur.github.io/docs/year3sct.pdf


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

